Everything Burns

Re-ignited


Escher-inspired Tesselations With Marked Tiles

Monday, 31 Oct 2022 Tags: eschermathprocessingtesselations

Some while ago (during or not too long after my college years), I found the following page in a collection of M.C. Escher’s notebooks, describing overlapping motifs on tiles, which, when arranged in various rotations, result in woven designs.

Marked tiles from Escher's notebooks

Using Adobe Illustrator at the time, I experimented with some tiles of my own. Initially I made some squares, but eventually designed some hexagonal tiles as well.

Recently I resurrected the square designs to start working with these by programming because it is tedious to do it by hand. Using the Processing language, I made two tiles, an “over” version and an “under” version.

Over and Under Tiles

Why they’re labeled “^” and “M” I’ll get to in a moment. Here’s a random tiling with both tiles, in various rotations.

Random Square Tiling

Once I could draw the tiles, I wanted to create more controlled layouts, using tile substitution.

In order to define substitution rules, I needed an alphabet to describe both the over and under tiles, in the various rotations. Escher used “A” and “B” with under bars to represent the “over-underness”, and then rotated the letters. I noodled a bit with Unicode characters that had rotations, thinking “T” and “E” (as in T and E modules) would be nice choices for reasons that maybe one other person I know might understand.

Being lazy, I preferred to use ASCII characters, and I settled on the following alphabet to represent the rotations of the over and under tiles:

^ > v < 
M 3 W E

Having an alphabet, I could now represent substitutions of one tile for a quad of 4 tiles, like this:

Substitution Rule as an image

M -> < E
     3 >

or, more succinctly as

M -> <E|3>

Now, given a ruleset like

^ -> EE|33
> -> MW|WM
v -> 33|EE
< -> WM|MW
M -> <E|3>
3 -> ^v|M^
W -> 3>|<E
E -> v^|Mv

Starting with an axiom of ‘^’ and doing 3 iterations of substitutions (replace the axiom, then replace each of those 4 squares, then replace each of those 16 squares…) you get a somewhat more orderly design.

32x32 substitution design

Which is represented by

E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E
3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3
< E E E < E E E < E 3 3 < E 3 3 < E E E < E E E < E 3 3 < E 3 3
3 > 3 3 3 > 3 3 3 > E E 3 > E E 3 > 3 3 3 > 3 3 3 > E E 3 > E E
3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3
E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E
< E 3 3 < E 3 3 < E E E < E E E < E 3 3 < E 3 3 < E E E < E E E
3 > E E 3 > E E 3 > 3 3 3 > 3 3 3 > E E 3 > E E 3 > 3 3 3 > 3 3
3 > < E 3 3 E E E E 3 3 E E 3 3 3 > < E 3 3 E E E E 3 3 E E 3 3
< E 3 > E E 3 3 3 3 E E 3 3 E E < E 3 > E E 3 3 3 3 E E 3 3 E E
< E 3 > < E 3 3 < E E E < E E E < E 3 > < E 3 3 < E E E < E E E
3 > < E 3 > E E 3 > 3 3 3 > 3 3 3 > < E 3 > E E 3 > 3 3 3 > 3 3
E E 3 3 < E 3 > 3 3 E E 3 3 E E E E 3 3 < E 3 > 3 3 E E 3 3 E E
3 3 E E 3 > < E E E 3 3 E E 3 3 3 3 E E 3 > < E E E 3 3 E E 3 3
< E E E 3 > < E < E 3 3 < E 3 3 < E E E 3 > < E < E 3 3 < E 3 3
3 > 3 3 < E 3 > 3 > E E 3 > E E 3 > 3 3 < E 3 > 3 > E E 3 > E E
3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3
E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E
< E 3 3 < E 3 3 < E E E < E E E < E 3 3 < E 3 3 < E E E < E E E
3 > E E 3 > E E 3 > 3 3 3 > 3 3 3 > E E 3 > E E 3 > 3 3 3 > 3 3
E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E
3 3 E E 3 3 E E E E 3 3 E E 3 3 3 3 E E 3 3 E E E E 3 3 E E 3 3
< E E E < E E E < E 3 3 < E 3 3 < E E E < E E E < E 3 3 < E 3 3
3 > 3 3 3 > 3 3 3 > E E 3 > E E 3 > 3 3 3 > 3 3 3 > E E 3 > E E
3 > < E 3 3 E E 3 3 E E 3 3 E E 3 > < E 3 3 E E 3 3 E E 3 3 E E
< E 3 > E E 3 3 E E 3 3 E E 3 3 < E 3 > E E 3 3 E E 3 3 E E 3 3
< E 3 > < E 3 3 < E 3 3 < E 3 3 < E 3 > < E 3 3 < E 3 3 < E 3 3
3 > < E 3 > E E 3 > E E 3 > E E 3 > < E 3 > E E 3 > E E 3 > E E
E E 3 3 < E 3 > E E 3 3 E E 3 3 E E 3 3 < E 3 > E E 3 3 E E 3 3
3 3 E E 3 > < E 3 3 E E 3 3 E E 3 3 E E 3 > < E 3 3 E E 3 3 E E
< E E E 3 > < E < E E E < E E E < E E E 3 > < E < E E E < E E E
3 > 3 3 < E 3 > 3 > 3 3 3 > 3 3 3 > 3 3 < E 3 > 3 > 3 3 3 > 3 3